Hamiltonian quantization of effective Lagrangians with massive vector fields.
نویسنده
چکیده
Effective Lagrangians containing arbitrary interactions of massive vector fields are quantized within the Hamiltonian path integral formalism. It is proven that correct Hamiltonian quantization of these models yields the same result as naive Lagrangian quantization (Matthews’s theorem). This theorem holds for models without gauge freedom as well as for (linearly or nonlinearly realized) spontaneously broken gauge theories. The Stueckelberg formalism, a procedure to rewrite effective Lagrangians in a gauge invariant way, is reformulated within the Hamiltonian formalism as a transition from a second class constrained theory to an equivalent first class constrained theory. The relations between linearly and nonlinearly realized spontaneously broken gauge theories are discussed. The quartically divergent Higgs self interaction is derived from the Hamiltonian path integral. E-Mail: [email protected]
منابع مشابه
On the tensor formulation of effective vector Lagrangians and duality transformations
Using two different methods inspired by duality transformations we present the equivalence between effective Lagrangians for massive vector mesons using a vector field and an antisymmetric tensor field. This completes the list of explicit field transformations between the various effective Lagrangian methods to describe massive vector and axial vector mesons.
متن کاملQuantization via hopping amplitudes: Schrödinger equation and free QED
Schrödinger’s equation with scalar and vector potentials is shown to describe “nothing but” hopping of a quantum particle on a lattice; any spatial variation of the hopping amplitudes acts like an external electric and/or magnetic field. The main point of the argument is the superposition principle for state vectors; Lagrangians, path integrals, or classical Hamiltonians are not (!) required. A...
متن کاملروش انتگرال مسیر برای مدل هابارد تک نواره
We review various ways to express the partition function of the single-band Hubard model as a path integral. The emphasis is made on the derivation of the action in the integrand of the path integral and the results obtained from this approach are discussed only briefly. Since the single-band Hubbard model is a pure fermionic model on the lattice and its Hamiltonian is a polynomial in creat...
متن کاملQuantization of electromagnetic fields in a circular cylindrical cavity
We present a quantization procedure for the electromagnetic field in a circular cylindrical cavity with perfectly conducting walls, which is based on the decomposition of the field. A new decomposition procedure is proposed; all vector mode functions satisfying the boundary conditions are obtained with the help of this decomposition. After expanding the quantized field in terms of the vector mo...
متن کاملLight Front Quantisation as an Initial-Boundary Value Problem
In the light front quantisation scheme initial conditions are usually provided on a single lightlike hyperplane. This, however, is insufficient to yield a unique solution of the field equations. We investigate under which additional conditions the problem of solving the field equations becomes well posed. The consequences for quantisation are studied within a Hamiltonian formulation by using th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. D, Particles and fields
دوره 48 6 شماره
صفحات -
تاریخ انتشار 1993